Cytomegalovirus Impairs the Induction of Indoleamine 2,3-Dioxygenase Mediated Antimicrobial and Immunoregulatory Effects in Human Fibroblasts
نویسندگان
چکیده
Human fibroblasts provide immunosuppressive functions that are partly mediated by the tryptophan-catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). Moreover, upon stimulation with inflammatory cytokines human fibroblasts exhibit broad-spectrum antimicrobial effector functions directed against various clinically relevant pathogens and these effects are also IDO-dependent. Therefore human fibroblasts are suggested to be involved in the control of immune reactions during infectious diseases. As human cytomegalovirus (HCMV) represents a pathogen frequently found in immunocompromised hosts and IDO is involved in the control of HCMV growth, we here investigated the impact of HCMV infection on IDO-mediated antimicrobial and immunoregulatory effects. We show that infection with HCMV substantially impairs IFN-γ-induced IDO-activity in human fibroblasts in a dose and time dependent fashion. Consequently, these cells are no longer able to restrict bacterial and parasitic growth and, furthermore, loose their IDO-mediated immunosuppressive capacity. Our results may have significant implications for the course of HCMV infection during solid organ transplantation: we suggest that loss of IDO-mediated antimicrobial and immunoregulatory functions during a HCMV infection might at least in part explain the enhanced risk of organ rejection and infections observed in patients with HCMV reactivation after solid organ transplantation.
منابع مشابه
Antimicrobial and immunoregulatory effector mechanisms in human endothelial cells. Indoleamine 2,3-dioxygenase versus inducible nitric oxide synthase.
In infectious diseases, interferon-gamma (IFN-gamma) is generally accepted as one of the most important inducers of antimicrobial and immunoregulatory effects, and both seemingly contradictory effects, can be mediated by the same effector molecules. In detail, several IFN-gamma induced enzymes such as the inducible nitric oxide synthase (iNOS) as well as the indoleamine 2,3-dioxygenase (IDO) al...
متن کاملIndoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.
BACKGROUND The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased im...
متن کاملRegulation of IDO Activity by Oxygen Supply: Inhibitory Effects on Antimicrobial and Immunoregulatory Functions
Tryptophan is an essential amino acid for human beings as well as for some microorganisms. In human cells the interferon-γ (IFN-γ) inducible enzyme indoleamine 2,3-dioxygenase (IDO) reduces local tryptophan levels and is therefore able to mediate broad-spectrum effector functions: IDO activity restricts the growth of various clinically relevant pathogens such as bacteria, parasites and viruses....
متن کاملIndoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملThe missing link between indoleamine 2,3-dioxygenase mediated antibacterial and immunoregulatory effects
The interferon (IFN)-gamma-inducible tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO) has not only been recognized as a potent antimicrobial effector molecule for the last 25 years but was recently found also to have potent immunoregulatory properties. In this study, we provide evidence that both tryptophan starvation and production of toxic tryptophan metabolites are involved in t...
متن کامل